TRITON DAY

UC San Diego
Congratulations!

You did it!
• Department Introductions
• Faculty Introductions
• Student Introduction
• Panel Discussion
• Q & A
Department Chair: Professor George Tynan

Undergraduate Chair: Professor Bob Bitmead

Undergraduate Academic Advising

Director of Student Affairs: Zachary Dake

Academic Advisors

- Chad Baldwin (A-L)
- Nadia Familier (M-Z)

Intake Advisor: Regina Ready
• UC San Diego is recognized as a leading research institution

• **UCSD's JSOE is ranked 5th among public engineering schools, and 9th in the country.**

• **MAE Research Areas:** Controls, Engineering Education, Fluids Mechanics, Materials, Oceanography, Robotics, Biomechanics, Medical Devices, Plasma & Fusion, and Renewables.
<table>
<thead>
<tr>
<th>AEROSPACE 1 & 2 YEAR</th>
<th>MECHANICAL 1 & 2 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 20A- Calculus for Science & Engineering</td>
<td></td>
</tr>
<tr>
<td>Math 20B- Calculus for Science & Engineering</td>
<td></td>
</tr>
<tr>
<td>Math 20C- Calculus and Analytic Geometry for Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>Physics 2A- Physics - Mechanics</td>
<td></td>
</tr>
<tr>
<td>Physics 2B- Physics - Electricity & Magnetism</td>
<td></td>
</tr>
<tr>
<td>Chem 6A- General Chemistry</td>
<td></td>
</tr>
<tr>
<td>MAE 2- Introduction to Aerospace Engineering</td>
<td></td>
</tr>
<tr>
<td>Math 20D- Introduction to Differential Equations</td>
<td></td>
</tr>
<tr>
<td>Math 20E- Vector Calculus</td>
<td></td>
</tr>
<tr>
<td>Math 18- Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Physics 2C & 2CL- Physics—Fluids, Waves, Thermodynamics, and Optics</td>
<td></td>
</tr>
<tr>
<td>MAE 8- Matlab Programming for Engineering Analysis</td>
<td></td>
</tr>
<tr>
<td>MAE 21- Aerospace Materials Science</td>
<td></td>
</tr>
<tr>
<td>MAE 30A- Kinematics</td>
<td></td>
</tr>
<tr>
<td>MAE 30B- Dynamics and Vibrations</td>
<td></td>
</tr>
<tr>
<td>MAE 131A- Solid Mechanics I</td>
<td></td>
</tr>
<tr>
<td>Math 20A- Calculus for Science & Engineering</td>
<td></td>
</tr>
<tr>
<td>Math 20B- Calculus for Science & Engineering</td>
<td></td>
</tr>
<tr>
<td>Math 20C- Calculus and Analytic Geometry for Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>Physics 2A- Physics - Mechanics</td>
<td></td>
</tr>
<tr>
<td>Physics 2B- Physics - Electricity & Magnetism</td>
<td></td>
</tr>
<tr>
<td>Chem 6A- General Chemistry</td>
<td></td>
</tr>
<tr>
<td>MAE 3- Introduction to Engineering Graphics and Design</td>
<td></td>
</tr>
<tr>
<td>Math 20D- Introduction to Differential Equations</td>
<td></td>
</tr>
<tr>
<td>Math 20E- Vector Calculus</td>
<td></td>
</tr>
<tr>
<td>Math 18- Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Physics 2C & 2CL- Physics—Fluids, Waves, Thermodynamics, and Optics</td>
<td></td>
</tr>
<tr>
<td>MAE 8- Matlab Programming for Engineering Analysis</td>
<td></td>
</tr>
<tr>
<td>MAE 20- Elements of Materials Science</td>
<td></td>
</tr>
<tr>
<td>MAE 30A- Kinematics</td>
<td></td>
</tr>
<tr>
<td>MAE 30B- Dynamics and Vibrations</td>
<td></td>
</tr>
<tr>
<td>MAE 131A- Solid Mechanics I</td>
<td></td>
</tr>
</tbody>
</table>
Aerospace vs Mechanical

<table>
<thead>
<tr>
<th>AEROSPACE 3 & 4 YEAR</th>
<th>MECHANICAL 3 & 4 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 11 - Thermodynamics</td>
<td>MAE 11 - Thermodynamics</td>
</tr>
<tr>
<td>MAE 105 - Introduction to Mathematical Physics</td>
<td>MAE 105 - Introduction to Mathematical Physics</td>
</tr>
<tr>
<td>MAE 107 - Computational Methods in Engineering</td>
<td>MAE 107 - Computational Methods in Engineering</td>
</tr>
<tr>
<td>MAE 101A - Introductory Fluid Mechanics</td>
<td>MAE 101A - Introductory Fluid Mechanics</td>
</tr>
<tr>
<td>MAE 101B - Advanced Fluid Mechanics</td>
<td>MAE 101B - Advanced Fluid Mechanics</td>
</tr>
<tr>
<td>MAE 143A - Signals and Systems</td>
<td>MAE 143A - Signals and Systems</td>
</tr>
<tr>
<td>MAE 143B - Linear Control</td>
<td>MAE 143B - Linear Control</td>
</tr>
<tr>
<td>MAE 170 - Experimental Techniques</td>
<td>MAE 170 - Experimental Techniques</td>
</tr>
<tr>
<td>MAE 180A - Spacecraft Guidance I</td>
<td>MAE 40 - Linear Circuits</td>
</tr>
<tr>
<td>SE 160A - Aerospace Structural Mechanics I</td>
<td>MAE 131B - Fundamentals of Solid Mechanics II</td>
</tr>
<tr>
<td>SE 160B - Aerospace Structural Mechanics II</td>
<td>TE - Technical Elective</td>
</tr>
<tr>
<td>MAE 101C - Heat Transfer</td>
<td>MAE 101C - Heat Transfer</td>
</tr>
<tr>
<td>MAE 104 - Aerodynamics</td>
<td>MAE 150 - Computer-Aided Design</td>
</tr>
<tr>
<td>MAE 175A - Aerospace Engineering Laboratory I</td>
<td>MAE 171A - Mechanical Engineering Laboratory I</td>
</tr>
<tr>
<td>MAE 142 - Dynamics and Control of Aerospace Vehicles</td>
<td>MAE 156A - Fundamental Principles of Mechanical Design I</td>
</tr>
<tr>
<td>MAE 113 - Fundamentals of Propulsion</td>
<td>MAE 156B - Fundamental Principles of Mechanical Design II</td>
</tr>
<tr>
<td>MAE 155A - Aerospace Engineering Design I</td>
<td>TE - Technical Elective</td>
</tr>
<tr>
<td>MAE 155B - Aerospace Engineering Design II</td>
<td>TE - Technical Elective</td>
</tr>
<tr>
<td>TE - Technical Elective</td>
<td>TE - Technical Elective</td>
</tr>
<tr>
<td>TE - Technical Elective</td>
<td>TE - Technical Elective</td>
</tr>
<tr>
<td>TE - Technical Elective</td>
<td>TE - Technical Elective</td>
</tr>
</tbody>
</table>
• Take 4 Technical Electives in a subject area and receive a specialization
 • Resume building, Advanced knowledge
• Choose from 70 courses
• Specialize in the following subject areas:
 • Controls & Robotics
 • Fluid Mechanics & Thermal Systems
 • Mechanics of Materials
 • Materials Science & Engineering
 • Renewable Energy & Environmental Flows (REEF)
COOPERATIVE EDUCATION (CO-OP)
The Cooperative Education (Co-op) Internship Program is an immersive work experience in which students are employed full-time by a company for up to six months, which includes summer and one academic quarter, to supplement education with real-world experiences.
For the pilot program (Summer and Fall Quarter), participating departments and class levels include:

- **Undergraduate:** Computer Science & Engineering, Electrical & Computer Engineering, Mechanical & Aerospace Engineering, NanoEngineering, and Structural Engineering.

PARTICIPATING CO-OP COMPANIES
Student Organizations
Boechler group overview (est. 2013)

Dynamically responsive materials:
- Role of microstructure → effective properties
- Underlying mechanical phenomena
- Nonlinearity for wave tailoring

Connect: Design of mesoscale model systems → experiment-driven exploration of self-assembled nanostructured analogs

Microstructure + mechanochemistry interaction
(collab. w/ Boydston, Ganter, Storti, Nelson groups [UW], Craig group [Duke], M. Fermen-Coker [ARL])

Materials with tailored nonlinear constitutive laws stemming from microstructural geometry
(collab. w/ Kim group [UCSD])

Surface instabilities in soft materials
(collab. w/ Cai group [UCSD])

Acoustics of biological structured media
(led by M. Abi Ghanem, collab. w/ T. Dehoux)

Non-reciprocal materials enabled by photoelasticity
(collab. w/ Deymier, Lucas groups [UA])
MAE170: Experimental Techniques

Description (typically taken end of 3rd year): Principles and practice of measurement and control and the design and conduct of experiments. Technical report writing. Lectures relate to dimensional analysis, error analysis, signal-to-noise problems, filtering, data acquisition and data reduction, as well as background of experiments and statistical analysis. Experiments relate to the use of electronic devices and sensors.

Physical phenomena

[Diagram of experimental setup with labeled components: Thermistor (temperature sensitive resistance), Signal conditioning electronics, Digitizer, Computer, Voltage source, Thermistor, Internal Oscilloscope Resistance, etc.]

More signal conditioning electronics
Undergraduate research

- Opportunities are widely available, either during the academic year or the summer (start searching winter of 1st year)
- Stipend, academic credit, volunteer, or fellowship
 - NSF REU / REM
- Massively helpful for job search or graduate school applications (experience, recommendations, track record)
- As a student, undergraduate research was one of the most transformative experiences of my life
Multifidelity Modeling
&
Uncertainty Quantification

Boris Kramer
Assistant Professor
Dynamics, Systems and Controls & Fluids
Prediction
- Long-time prediction provides valuable system insight
- Expensive and time-consuming when physics are complex

Uncertainty Quantification (UQ)
- Uncertain parameters lead to uncertain system responses
- Brings statistics into engineering design

Design
- Exploration of high-dimensional design space
- How can we design under uncertainty?
Model Reduction for Nonlinear Multi-Scale Systems

Reduced-order modeling
- ROM can predict behaviors in complex systems w/o doing the direct simulation of the high-fidelity model.
- Developing advanced computational methods to achieve that

Uncertainty Quantification & Design under Uncertainty

Input Parameters
\(X_1 \)
\(X_2 \)
\(X_3 \)

Model
\(Y_1 = f_1(X) \)
\(Y_2 = f_2(X) \)
Cost: \(O(h)-O(\text{days}) \)

Evaluate Quantities of Interest
\(Y_1 \)
\(Y_2 \)

Quantify Uncertainty
- Failure Probability
- Output distribution
- Sensitivity Analysis
- Rare events

Development of multi-fidelity methods for UQ

Tail-probabilities are very important in design

Histogram of project cost given uncertain inputs

PDE
\[\frac{\partial s}{\partial t} = f(s) + Bu \]

FEM/FVM/FD

N-dim. ODE
\[\dot{s} = f(s, t) + Bu \]

Model Reduction

n-dim. ODE (n<<N)
\[\hat{\dot{s}} = \hat{f}(\hat{s}, t) + \hat{Bu} \]
Hello, I am Daniel Ho

About me:
About Me:
• 5th Year (3rd Year Transfer)
• Earl Warren College
• Transferred from a Community College in Sacramento, CA

Experience:
• College Ambassador
• RA - Village
• Intern
 • DAV Energy
 • Industrial Environmental Association
• I switched from Environmental Engineering to Mechanical Engineering last Winter but have always been passionate about environmental issues. I work with them to this day.
Hello, I am Jonathan Rodriguez

About me:
• Aerospace Engineering 3rd Year Transfer
• Muir College

Experience:
• 2018 – UTC Aerospace Systems, R&D Mechanical Eng. Intern
 Studied compressible flow in aircraft ducts

• 2019 – Collins Aerospace, R&D Mechanical Eng. Intern
 Researched current tooling issues, investigated potential solutions

• During my last year at UCSD I have been able to take many classes regarding composite aerostructures. Upon graduation, I hope to be able to progress in the field of composites for years to come.
Hello, I am Claire Stones

About me:
• Major: Mechanical Engineering
• Specialization in Renewable Energy and Environmental Flows
• Minor: Climate Change Studies
• Fourth year, graduating in Winter 2021
• Eleanor Roosevelt College

Experience:
• Member of Engineers for a Sustainable World (ESW) for 3 years
• Project Lead of CommUnity Garden, an ESW project that works to increase food security for low-income high school students and to inspire them to pursue STEM in college, for 1.5 years

• I switched my major twice, from Biology to Environmental Engineering to Mechanical Engineering.
• I am passionate about sustainability and combating climate change. My career interests are renewable energy and sustainable building design.
Faculty
- How can undergraduates benefit from the top-notch research at UCSD?
- What drew you to UCSD?

Students
- What extracurricular activities have you or your classmates been engaged in (internships, student orgs, etc..)?
- How has MAE prepared you for your future career?
- What advice would you like to give prospective students still deciding on a school?
VISIT OUR TRITON DAY Q&A DOCUMENT FOR A LIST OF QUESTIONS & ANSWERS FROM THE EVENT!